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A systematic approach was developed to obtain analytic solutions for the concentrations of the quasi steady
state (QSS) species in reduced mechanisms. The nonlinear algebraic equations for the QSS species
concentrations were first approximated by a set of linear equations, and the linearized quasi steady state
approximations (LQSSA) were then analytically solved with a directed graph, namely a QSSG, which was
abstracted from the inter-dependence of QSS species. To obtain analytic solutions of high computational
efficiency, the groups of strongly connected QSS species were first identified in the QSSG. The inter group
couplings were then resolved by a topological sort, and the inner group couplings were solved with variable
elimination by substitution. An efficient algorithm was developed to identify a near-optimal sequence for the
variable elimination process. The proposed LQSSA-QSSG method was applied to generate a 16-step reduced
mechanism for ethylene/air, and good accuracy and high efficiency were observed in simulations of auto-
ignition and perfectly stirred reactors with the reduced mechanism.

1. Introduction Specifically, a systematic procedure for lumping elementary
reactions into semi-global reactions for QSSA based reduction

The importance of applying detailed chemical kinetics in was developed the error induced by QSSA was analy2&d,

combustion simulations is now generally recognized. It is further f
recognized that, limited by current computer power, it is and the effects of QSSA on the element conservation and

. ) ifntropy production were studiéd.
necessary to reduce these mechanisms to smaller sizes and wit ; ) .
less stiffness such that the simulations are efficient and 1he consequence of invoking QSSA is frequently the need

reasonably accurate. The need is particularly relevant in studiest© Solve a set of coupled, nonlinear, algebraic equations to obtain
on turbulence and flow fields with complex geometries. the concentrations of the quasi steady state (QSS) species, which

Various methods have therefore been developed for mech-&'€ required to evaluate the global reaction rates. In most of
anism reduction, generally falling within the two major catego- the previous studies, these equations were solved by algebraic
ries of skeletal reduction and reduction based on time-scale iterations, which may require a large number of computation
analysis. In skeletal reduction unimportant reactions and specied®0PS 0 converge. As such, the time savings gained by the
are eliminated from the detailed mechanisms with negligible €limination of species and reactions are compromised, rendering
reduction error. Representative methods include sensitivity the reduced mechanisms inefficient to apfiEven worse, the
analysist principal component analysisJacobian analysi, algebraic iterations may diverge and consequently lead to failure
detailed reductiodcomputational singular perturbation (CS®), in obtaining trustable final solutions in large simulations. To

optimization? directed relation graph (DR@)X°and DRG with resolve this problem, empirical methods have been applied to
error propagatiod! truncate terms in the nonlinear algebraic equafibssch that

While skeletal mechanisms are smaller than the detailed ones [h€ resulting system is sufficiently simple to be solved analyti-

they are typically still stiff in that many radicals with short time cally. The errors associated with such truncations, however, are

scales are important species and cannot be eliminated in skeletaireduently difficult to assess. It is therefore of interest to develop

reduction. To remove the stiffness, methods based on time scale? SyStematic and efficient approach to obtain accurate analytic
analysis, such as quasi steady state approximation (J8S2) solutions for the equations of QSSA. In response to such a nee_d,
and rate-controlled constrained equilibridfcan be exploited. & Method based on graph theory was developed to obtain
More systematic approaches involve the separation of fast and@nalytic solutions for the QSS species concentrations with user
slow subspaces by decoupling the Jacobian matrix, notably those>Pecified accuracy, and as such significantly improves the

of intrinsic low dimensional manifold (ILDMP and CSFL eﬁ[0|ency and' applicability Qf QSs baseq reduced mechanisms.
Because time scale separation requires time-consuming matrix! "iS method is presented in the following.

operations, as well as iterations in many cases, it frequently

needs to be combined with methods of tabulation, such as in-2. Methodology

situ adaptive tabulation (ISA%) and pre-imaged curvéd.On

the other hand, the QSSA approach, developed almost a century A QSS species typically features a fast destruction time scale
ago?*2 is simple to apply and has been widely adopted in Such thatits small or moderate creation rate is quickly balanced

studies on mechanism reduction in the last two decidés. by the self-depleting destruction rate, causing it to remain in
low concentration after a transient period. The net production

*To whom correspondence should be addressed. E-mail: tlu@ rate of the QSS species is therefore_ negligible comp_areq with
princeton.edu. both the creation and the destruction rates, resulting in an
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algebraic equation for its concentration. If a system consists of wheree is a user-specified small threshold value, for example
multiple QSS species, the algebraic equations are in general0.1. Furthermore, if (3) is satisfied for all the reaction states of
nonlinearly coupled, and analytic solutions are difficult to obtain. interest, the nonlinear terms can be completely eliminated, and
Consequently, these nonlinear equations are frequently solvedthe QSS relations in (1) are then approximated by a set of linear
by algebraic iterations. In the following we shall, however, equations:
demonstrate that the nonlinear terms are not important in many
instances such that the nonlinear system can be approximated Dix = ;Cikxk +C, i=12..N
in a rational manner by a set of linear equations. i

2.1. Linearized Quasi Steady State Approximation (LQS- I

SA). In a reaction mechanism consisting bfirreversible Zvi”jgj sign@y)
elementary reactions aritl species, with the firsN of which Wp & ’
assumed to be in steady state without loss of generality, the Dj=— Cy=
group of algebraic equations of QSSA can be expressed as %; X
) ) oy Lty >0
we;=wp;  1=1,2,..N SigNGi) =1 0, if vi; =0
| | K
Wcj= Z"i',’jgi Wpj = Z"i’,jgj Q= kjﬂxkv “ c ! .
= = = 0~ Z"w‘ 9]
(1) 2
where the subscripfsj, andk indicate theith QSS species, the o = 1, if reactonj has no QSS reactan&)

) ] 0, otherwise )
It is readily seen thab;, Ci, andCjp are independent of QSS

species concentrations and as such are treated as constants in
solvingx;. It is further noted thab; is positive, andCix andCig
are non-negative. This observation will be exploited in solving
eq 4 in the following sections.
We next note that although the linear equations in eq 4 can

be solved with Gaussian elimination, the time complexity is a
ubic function of the number of QSS species. Furthermore,
hough algebraic iterations can be more efficient because the
coefficient matrix in eq 4 is frequently sparse, the procedure
may suffer from the difficulty in convergence. The computation,
however, can be greatly facilitated by deriving an analytic

jth reaction, and thé&th species respectivelyyc and wp are

the creation and destruction rates, respectivelis the mole
concentrationy” andv'"" are the stoichiometric coefficients of
the reactants and products respectiv€lyis the reaction rate,
andk is the product of the Arrhenius rate expression and relevant
rate corrections, such as the third body concentration and the
falloff correction.

Equation 1 is nonlinear in general in terms xf mostly
because there are frequently reactions containing more than on
QSS reactants, resulting in nonlinearityt While an analytic
solution of eq 1 is in general not available, we recognize that
the concentrations of QSS species are typically small such that

the collision frequency of two QSS species is small. Conse- solution based on the sparse coefficient matrix. This was

quently, reactions with more than one, mostly two, QSS . .
reactants may not be important in the mechanism in most Casesgccompl|shed in the present study through graph theory, to be

(e . .__discussed next.
Furthermore, it is well recognized that the effects of QSS species .
in the third body concentration and other correction ternig in bfz QSS Grapr; (QS|SG)2‘.12.%: (tBrapkf\ Consttru;?o?‘rﬁ) .
are typically negligible. As such, after the unimportant reactions obtain aseque.nce 0 Solve eq 4, LIS transtormed {o the Toflowing
and species are eliminated from detailed mechanisms by skeleta?tandard form:
reduction, it is expected that the existence of important nonlinear _ .
terms in QSS relations for skeletal mechanisms is of low %= ZA"JXJ' thAo 1=1,2..N ©)
probability, and a linear approximation of the equations is likely =
to exist. This point will be demonstrated in section 3 with \where
ethylene as an example.
To assess the importance of the nonlinear terms, the normal- G G
ized contributions of the nonlinear terms to the destruction and A = HI Ao = HI
creation rates of theh QSS species can be quantified as
| | It is seen thath; and A are both non-negative in th&; is
, . positive, andC;; andCip are non-negative, as mentioned earlier.
Zvi 0 Zviijéj If Aj > 0, the concentratior; is needed to directly solve fog
o = B, = 2) in eq 5. Such directed requirement of one QSS species by
Wp; we; another can be mapped to a directed graph, namely the QSSG,
in which each QSS species is a vertex, and there is anxedge
where — ¥ if and only if Aj > 0. A representative configuration of
QSSG is shown in Figure 1a and will be discussed later.
5 = {1, if reacton has more than one QSS reactants In rare cases, all equations in (5) are explicit, which means
1710, otherwise that there is a sequenceiof which the equations can be solved
one after another without substitution. This indicates an acyclic
QSSG, such that the graph can be transformed to a tree structure,
and the solution of each nodeonly requires the information

The nonlinear terms can therefore be eliminated from the QSS
relations for a given reaction state if

o <e and B,..<e (3a) of the nodes in the subtree rooted Ry In most practical
max max H
problems, some subsets of the QSS species are strongly coupled
o= max (o) B...= max(B) (3b) and cycles exist in QSSG. In such cases, the QSS species can
max =g, N max =g, N be decomposed into groups. The inner-group couplings of the
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3 Starting from each “undiscovered” vertexa DFS is performed
on both graph G and graphGvith the transposed adjacency
/GD \ matrix ET; a vertex is labeled “discovered” if it is reached by
. . the DFS in both G and G All the vertices newly “discovered”
. — 5 1 by the current DFS then constitute an SCC. This procedure is
A B repeated until all the vertices are “discovered”.
(a) (b) As aforementioned, each QSS species in an SCC requires

Figure 1. Sample QSSG showing (a) the existence of SCCs, which the concentrations of all the other QSS species in the same SCC
are enclosed in dotted circles, and (b) the acyclic graph derived from e€ither directly or indirectly. The inner-SCC couplings are strong,
(a) by treating each SCC as a composite vertex. The topological orderand each of the SCCs can be treated as a single composite
of vertices is marked in (b), indicating the sequence in which the SCCs vertex, the incoming and outgoing edges of which being the
are to be solved, e.g{xs} — {Xa, X5} — {x1, X2, Xa}. union of those of its member vertices. As such, an acyclic graph

. . . . can be obtained, as shown in Figure 1b for the graph in Figure
species form cycles in QSSG, and the inter-group couplings 15 Each composite vertex in Figure 1b is labeled a unique

are acyclic, such that the QSS species can be solved group by, ,mper, namely the topological order, such that the species in
group in a semi-explicit manner. Although only a single group e ScC with orden only depends on the species in the SCCs
can be found in QSSG iA is a full matrix, multiple groups \ith orders not larger tham Therefore, the SCCs can be solved
can be found ifA is sufficiently sparse. Therefore, the first step o after another in the topological order. The process to find

in solving eq 5 is to reduce the QSSG by eliminating , y,noiogical order for acyclic graphs is known as topological
unnecessary graph edges, the importance of which is measured .+ ssdescribed in ref 30.

by the normalized contributionj;, of thejth QSS species to 2.2.3. Resolng Inner-SCC Coupling#fter the identification

the creation rate of thith QSS species: of the SCCs and the topological sort, the last step is to solve
AX the species concentrations within each SCC with variable

x—x iff P> e . =ma ! elimination by substitution. Although the species in each SCC

u i s are strongly connected, the subgraph of each SCC may still be

;Aikxk + Ao sparse, and the length of the expressions of the analytic solution

' (6) can be minimized by the proper selection of a sequence for
variable elimination, as what is frequently done when solving

whereSis the set of all possible reaction states of interest. When algebraic equations with pencil and paper. To automate this
rj is compared with a user specified small threshold vajue ~ Process, an algorithm similar to that for computing pager#inks
the terms with negligible contribution to the creation ratecof ~ in worldwide-web search engines is developed to find an optimal
are truncated, resulting in the elimination of the corresponding ©f near-optimal sequence for variable elimination. This is
edges in the QSSG. A sparser graph can therefore be obtained@ccomplished by ranking the normalized expansion @sof
2.2.2. Strongly Connected Component (SCC) and Topological €ach variable, defined recursively as
Sort of QSSGThe reduced QSSG is expected to be sparse in
that each QSS species typically only interacts with a few of the c=L-c
others. In an example QSSG shown in Figure la, three SCCs, E,
namely A, B, and C, each of which is a group of species c=(c,Cy...Cy)"  and L = : (8)
connected by at least one cyclic path, are enclosed in dotted M
circles. The species inside each SCC form a set of implicit ZEkj
equations that need to be solved with variable elimination by k=
substitution. However, when all the SCCs are identified, the
dependence of one SCC on another is acyclic, and the SCCswhereM is the number of variables in the SCC, and the matrix
can be solved one after another in a sequence. In such cases, la is derived from the adjacency matri€ in eq 7 with
block upper-triangular coefficient matrix can be obtained by normalized columns, such that the sum of each column is unity.
rearranging the sequence of the variables. The solution of eq 5It is readily seen that the solution ofin (8) is the eigenvector
is therefore decomposed into solving several smaller equationassociated with the principal eigenvalue of matrixbecause
sets, the total cost of which is lower than that of solving the each entry ot is non-negative and the sum of each column is
large equation set, in that the cost of solving linear problems is unity. The value ofci empirically indicates the extent of
a worse-than-linear, typically a quadratic, function of the number expansion in the length of the equations due to the elimination
of variables. of the ith species in the SCC. The system typically expands
To identify the SCCs in a QSSG, existing methods in graph quickly in the beginning of the substitutions; however, the extent
theory can be employed. Formally, a SCC is defined as a of the expansion becomes restricted in the later substitution stage
maximal subgraph in a directed graph, and there is a directedbecause the size of the system is becoming smaller. Therefore,
path between any pair of vertices inside the SCC. A method variables with the lowest expansion cost should be solved first
based on depth-first search (DFS) can be applied to systematito maintain a system as sparse as possible in the initial stage,
cally and efficiently identify all the SCC¥.For convenience, and consequently the overall computation cost of the solution
a brief explanation of this method is presented below. can be restricted to a minimal level. As such, the sequence
For a directed graph consisting of vertices, all labeled through which each variable is to be eliminated by substitution
“undiscovered” initially, letE denote the adjacent matrix of the can be determined by sorting the expansion costs of the variables
graph, where in the SCC in ascending order.
] ) The method of LQSSA-QSSG is so far complete. It is now
_ {1: if there is an edge — x @ applied to an example mechanism for ethylene/air in the next
i 0, otherwise section.
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defined in eq 3b, for more than 1000 densely sampled reaction states
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eliminated in a skeletal reduction. To demonstrate this point,
Figure 2b shows the histogram ofnax and Smax for the 33
species skeletal mechanism derived from the detailed mechanism
with the DRG method.It is seen that, once the unimportant
species and reactions are removed, contributions of the nonlinear
terms to both the creation and destruction rates are small, e.g.,
about 0.1-0.2, for all the QSS species. Therefore, LQSSA is
applicable after the skeletal reduction, in which all the unim-
portant QSS species are removed.

In rare cases where a few non-negligible nonlinear terms still
remain after the skeletal reduction, three strategies can be
assumed: (1) Remove some species from the QSS species list,
such that the resulting algebraic equations are linear. Because
important reactions with more than one QSS species are rare,
it is expected that only very few species need to be removed
from the QSS species list to form a linear system. Thus the
size of the resulting reduced mechanism is not significantly
increased. (2) If there are only very few, e.g., one or two,
nonlinear relations in eq 1, the nonlinear equations can be solved

from PSR and auto-ignition, calculated with (a) the detailed mechanism @S the last ones in the process of variable elimination by

with 70 species, and (b) the 33 species skeletal mechanism.

3. Results and Discussion

To demonstrate the algorithm described in section 2, a
detailed mechanism with 70 specdiésand a corresponding
skeletal mechanism with 33 spediagere selected as target
mechanisms for reduction based on QSSA. First, using a
threshold value ot = 0.1 for normalized species time scales
as that in ref 8, a set of 24 QSS species, namely C, CH, CH
CHy*, HCO, CH,OH, CH;O, GH, C;H3, C,Hs, HCCO, Ch-
CHO, GH», n-C4Hs3, i-C4H3, n-C4Hs, i-C4H5, CyH7, CgH3, A1,
CsH40H, n-C3Hy7, i-C3H7, and CHCCH,, were identified in the
detailed mechanism using the method in ref 6. Second, the sam
12 QSS species as those in ref 8 were assumed in the 33 speci

skeletal mechanism, resulting in a 16-step reduced mechanism

To derive an analytic solution to the QSSA equations valid over

e
es

substitution. Because these nonlinear equations are treated only
in the last couple of steps, the system of equations is already
sufficiently small to be readily solved. (3) In extreme cases
where many nonlinear terms remain even after the skeletal
reduction, a hybrid method that combines the iteration and
analytic solution of the linear components can be applied.
Specifically, in each loop of the hybrid method, the linear
components are first solved analytically with the nonlinear terms
treated as constants, which are then updated with the latest
results from the linear component. It is expected that it takes
fewer iterations, consequently less computation cost, to converge
with the hybrid scheme than with simple algebraic iterations if
the linear component is convergence-rate limiting. It is noted
nevertheless that though more can be discussed on the hybrid
method, it exists only under extremely rare situations and as

such is not the primary interest of this work.

a wide parameter range, more than 1000 reaction states were e therefore proceed with the linear system obtained after
densely sampled from simulations of the perfectly stirred reactor the skeletal reduction. The sparsity of the QSSA equations is
(PSR) and auto-ignition, which are typical homogeneous ap- consequently to be examined. With the equations org_amze_d in
plications for extinction and ignition phenomena, respectively, the form of eq 5, QSSGs were constructed from (6), in which
with pressures from 1 to 30 atm, equivalence ratios from 0.5 to i» theé maximum normalized contributions of terms involving
1.5, and initial temperatures from 1000 to 1600 K for auto- % 0 X, were computed using all the sampled reaction states
ignition and 300 K for PSR. The sampled reaction states are @nd compared with the small threshold vakueAn edgex —
then applied as the data source for the algorithm in section 2.% in the QSSG is neglected>f contributes negligibly to; for

To check the validity of LQSSA for the QSS species, the all instances. Th(_a dependence of the number_ of edges_ in the
normalized contributions of the nonlinear terms to the creation @SSG as a function of the small threshold vadtie shown in
rate and destruction rates of the QSS species were calculatedigure 3. Itis seen that with = 0, there are about 40 edges,
using egs 2 and 3b. Figure 2a shows the histogramyaf and each of Whlgh indicates a.n.ontrlwal .coeff|.0|em',- in eq 5.
Bmax defined in eq 3b, calculated with the detailed mechanism Compared with the full coefficient matrix of size 12 by 12, there
for all the sampled reaction states. It is seen that the contributionsa'® only less than 30% nontrivial coefficients Ay which is
of the nonlinear terms to the destruction rates of the QSS speciedairly sparse. Further selection ef+ 0.1 leaves only 25 edges
are generally small, e.g., less than about 0.1, and their contribu-in the reduced QSSG, as shown in Figure 3. The fraction of
tions to the creation rates are non-negligible in many cases, withnontrivial entries inA consequently decreases to less than 20%,
the worst case value being close to unity. Therefore, LQSSA @nd such a sparse graph results in the highly efficient solution
does not seem to be applicable to the detailed mechanism.of the LQSSA equations.
However, considering that when the contributions of the  The QSSG obtained with = 0.11 is shown in Figure 4, in
nonlinear terms to the destruction rates of all the QSS specieswhich four SCCs were identified, three of which contain only
are small, as shown in Figure 2a, reactions with more than onea single species. The topological order obtained with the method
QSS species, e.g., A and B, can only control unimportant in section 2.2 indicates the sequence in which the QSS species
reaction pathways with smaller rates as compared to the majorconcentrations can be solved as groups. The solutions of groups
destruction pathways of A and B. If these slow reaction 2—4 are straightforward because there is only a single species
pathways are the major creation terms for a certain downstreamin each group, but group 1 contains 9 coupled species and an
QSS species C, species C is likely to be unimportant for the efficient sequence for variable elimination is needed and can
production rate of the major species, and as such can bebe found with the algorithm in eq 8. The result is listed in Table
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; ; ; tions and divisions, in 10 000 random tests, each with an automatically
Figure 3. Number of edges in the QSSG as a function of the threshold ' . ! . X
valuee, showing that linear equations of LOSSA are sparse, and the 9€nerated FORTRAN code solving the nine-species SCC shown in

sparsity increases with larger threshold vadue Figure 4.

1 Strongly connected component computation cost, is approximately in normal distribution. The
most efficient sequence discovered in the 10 000 tests consists

@ ° o of 91 operations, and the sequence identified with the proposed
. algorithm has 92 operations, which is almost the minimum

value. It is further observed in Figure 5 that a randomly selected
variable elimination sequence may result in higher computation
@ costs than the optimal sequence by a factor of about 2 on average

and about 3 in the worst cases, demonstrating the necessity of
searching for an optimized sequence.
@ @ @ It is further noted that, although the efficiency might be further

improved slightly by using the exact optimal sequence, it is
Figure 4. Directed graph for QSS species with four SCCs, three of exceedingly more difficult to find such an exact solution because

which contain a single species, calculated with the skeletal mechanismit involves the problem of integer programming, which is known

y
;
;

of 33 species, 12 of which are in QSS, with a threshold value to be NP-hard and inefficient to solve. Furthermore, it is difficult
0.11. The topological order is marked at the top-left corner of each to formulate the exact optimization problem, both due to the
SCC. difficulty in the exact timing of different operations in a general
TABLE 1: Optimal Sequence of Elimination by Substitution computation enviror_lment and be_cause it is frequently not
for 9 QSS Species in a Strongly Connected Component in completely clear which target function and constraints are the
the QSSG of the 33 Species Skeletal Mechanism with= best choice for the optimization of a reduced mechanism.
0.11 Therefore, finding the exact optimal solution might not be of
no. QSS species expansion cost the best interest fo_r many _practical appliqations, becaus_,e the
1 CoHs 0,06 proposed method is sufficiently fast to find a near-optimal
5 c 0.14 sequence.
3 CH,OH 0.19 To demonstrate the accuracy of the proposed method, in
4 CH,CHO 0.26 Figures 6 and 7 the 16-step reduced mechanism with LQSSA-
5 HCCO 0.26 QSSG was compared with the 33-species skeletal mechanism
g ﬁ'(':'?(; %3389 and the 16-step reduced mechanism with QSSA solved with
8 Chy 0.46 algebraic iterations, for auto-ignition and PSR respectively. It
9 CH 0.55 is seen from Figure 6 that although there is a slightly visible

difference in the ignition delay time between the skeletal
1. It is seen from Figure 4 and Table 1 that the species that aremechanism and the 16-step mechanism with iteration, the
coupled weakly with other species, such asi€and C, are to difference between the two 16-step reduced mechanisms is much
be eliminated first, and the species that are coupled strongly smaller and basically invisible. In Figure 7, all the three
with others, such as GHand CH, are eliminated later. Such a mechanisms agree very well with one another, and the errors
sequence therefore effectively reduces the expansion of theare not visible. Furthermore, although only stoichiometric
expressions in the beginning stage of the variable elimination mixtures are demonstrated in Figures 6 and 7, comparisons for
process and improves the overall efficiency of the solution. This off-stoichiometric mixtures show similar agreement.
method does not guarantee the exact optimal solution, but it To further show the magnitudes of the errors induced by the
finds suboptimal solutions close to the optimal one. To QSSA and the elimination of nonlinear and small linear terms
demonstrate this point, a set of 10 000 randomly generatedin LQSSA-QSSG, the relative errors in the profiles of Figures
variable elimination sequences, each of which occurs with the 6 and 7 are plotted in Figures 8 and 9, respectively. It is seen
same probability, were tested. A FORTRAN code was generatedthat the difference between the 16-step mechanisms with
for each sequence, and the number of operations, includingLQSSA-QSSG and QSSA with algebraic iterations is much
multiplications and divisions, in each of the FORTAN codes smaller than the error induced by QSSA; i.e., the additional
was counted. The result of the random test is shown in Figure accuracy loss induced by the elimination of nonlinear and small
5. Itis seen from the histogram that the number of instances aslinear terms in the LQSSA-QSSG method is negligible com-
a function of the number of operations, consequently the pared with that induced by QSSA. Furthermore, the overall small
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skeletal mechanism, the 16-step reduced mechanism with QSSA, andFigure 9. Relative error in calculated residence time as a function of
the 16-step mechanism with LQSSA-QSSG respectively. temperature deficiency from the adiabatic flame temperature in perfectly

stirred reactors for the profiles shown in Figure 7. The 16-step
relative errors for both the ignition and extinction cases over Mechanism with LQSSA-QSSG is compared with the 33-species
the wide parameter ranges of pressure, temperature andskeletal mechanism and the 16-step mechanism with QSSA respectively.
equivalence ratio show the validity of the LQSSA-QSSG

method, in addition to the efficiency and feasibility demonstrated thermodynamics in addition to those induced in the method
in earlier figures. combining skeletal reduction and QSSA.

Finally, to further compare the properties of the current
LQSSA-QSSG method with those of the classical QSSA, it is
noted that though LQSSA and QSSA are based on the same In the above sections, the systematic approach of LQSSA-
physical observation that the destruction rate of a QSS speciesQSSG for obtaining analytic solutions for QSS species con-
balances its creation rate after a transient period, the two centrations in reduced mechanisms was presented. It is shown
methods have qualitatively different properties. For example, that although the algebraic equations of QSSA are nonlinear in
although neither existence nor uniqueness of the solution is general, the equations can be approximated accurately by a linear
guaranteed for general nonlinear equations of QSSA, both aresystem under most situations. This is based on the physical
guaranteed for the linearized system. It is further noted that, reasoning that QSS species typically exist in low concentrations
because the elimination of nonlinear terms and weak depend-and as such the probability of collisions between two QSS
ences between QSS species in LQSSA-QSSG can be equivaspecies is expected to be much lower than that involving the
lently achieved through elimination of the corresponding major species. Therefore, the majority of reactions involving
elementary reactions from the detailed or skeletal mechanisms,more than one QSS reactant can be eliminated through skeletal
the method of LQSSA-QSSG does not induce any new sourcereduction, resulting in a linear or near-linear set of equations
of element nonconservation or violation of the second law of for the QSS species in the skeletal mechanism. The linear system

4., Conclusions
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is found to be typically sparse and the QSSG method mapping ~ (6) Lu, T. F.; Ju, Y.; Law, C. KCombust. Flam&001, 126, 1445~

the QSS species dependences to a directed graph is employeél4557- Bhattacharice. B Schwer. b. A- Barton. b L. G W H
to solve the LQSSA equations analytically. By first identifying cone bsovs 156 101 o08, - oron P 1 Green, W

the SCCs in QSSG, we then solved the implicit inner-SCC  (g) Ly, T. F.; Law, C. K.Proc. Combust. Ins2005 30, 1333-1341.
couplings by substitution with an eigenvalue based algorithm, (9) Lu, T. F.; Law, C. K.Combust. Flam@005 144, 24—36.
which was developed to efficiently find near-optimal sequences  (10) Lu, T. F.; Law, C. K.Combust. Flam&006 146, 472-483.

i iminati i _ i (11) Pepiot P.; Pitsch H. Systematic Reduction of Large Chemical
for variable elimination. The inter-SCC couplings were resolved Mechanisms. 4th Joint Meeting of the U.S. Sections of the Combustion

by a topologically sort to obtain a sequence in which the SCCs nsiitute, Drexel University: Philadelphia, March 223, 2005
can be solved one after another explicitly. The efficiency is high  (12) Peters, N.Lecture Notes in PhysigsGlowinski, et al., Eds.;

for both the algorithm and the automatically generated solver Springer: Berlin, 1985; p 90.
code. (13) Peters, N.; Kee, R. Lombust. Flame 987, 68, 17—29.

. . ] (14) Chen, J. YCombust. Sci. Technal988 57, 89—94.
The proposed algorithm has been compiled into a computer (15) Smooke, M. DLecture Notes in Physics 38&pringer-Verlag:

code and a FORTRAN subroutine has been generated on thegeriin, 1991; p 1.
basis of a 33 species skeletal mechanism developed previously (16) Ju, Y.; Niioka, T.Combust. Flamel994 99, 240-246.
using DRG, and has been compared with the iterative QSSA (17) Sung, C. J.; Law, C. K,; Chen, J. Proc. Combust. Inst1998

; ; 27, 295-304.
solver employed in the previous work for the 16-step reduced =% 707 00 & \iscon b Mauss, Proc. Combust. Ins200Q 28,
mechanism. Results show that the elimination of the nonlinear 1g59-1g15.
terms and the weak dependences between QSS species induce (19) Hamirouney, D.; Bishnuy, P.; Metghalchiy, M.; Keckz, J. C.
negligible errors to the system compared with those by QSSA Combust. Theory Modelling998 2, 81-94.

for the ethylene/air mixtures. As such, the LQSSA-QSSG (g? ’I:"aaSvSU-hF.’Oge' S. E‘E)O”;\?“Stj F(I;r]nagng_ 88'12359‘324;161_
method can serve as a rather general approach to eliminate thgsé_ ) Lam, S. H.; Gousis, D. Alnt. J. Chem. Kinet1994 26,

algebraic iterations in QSS-based reduced mechanisms. The (22) pope, S. BCombust. Theory Modeling997, 1, 41—63.
various concepts and methodologies advanced herein are also (23) Ren, Z.; Pope, S. Broc. Combust. Ins2005 30, 1293-1300.

expected to be of utility in other branches of science involving  (24) Bodenstein, M. ZPhys. Chem1913 85, 329.

large systems of sparsely coupled entities. 49((525) Underhill, L. K.; Chapman, D. LJ. Chem. Soc. Tran4913 103
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