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A systematic approach was developed to obtain analytic solutions for the concentrations of the quasi steady
state (QSS) species in reduced mechanisms. The nonlinear algebraic equations for the QSS species
concentrations were first approximated by a set of linear equations, and the linearized quasi steady state
approximations (LQSSA) were then analytically solved with a directed graph, namely a QSSG, which was
abstracted from the inter-dependence of QSS species. To obtain analytic solutions of high computational
efficiency, the groups of strongly connected QSS species were first identified in the QSSG. The inter group
couplings were then resolved by a topological sort, and the inner group couplings were solved with variable
elimination by substitution. An efficient algorithm was developed to identify a near-optimal sequence for the
variable elimination process. The proposed LQSSA-QSSG method was applied to generate a 16-step reduced
mechanism for ethylene/air, and good accuracy and high efficiency were observed in simulations of auto-
ignition and perfectly stirred reactors with the reduced mechanism.

1. Introduction

The importance of applying detailed chemical kinetics in
combustion simulations is now generally recognized. It is further
recognized that, limited by current computer power, it is
necessary to reduce these mechanisms to smaller sizes and with
less stiffness such that the simulations are efficient and
reasonably accurate. The need is particularly relevant in studies
on turbulence and flow fields with complex geometries.

Various methods have therefore been developed for mech-
anism reduction, generally falling within the two major catego-
ries of skeletal reduction and reduction based on time-scale
analysis. In skeletal reduction unimportant reactions and species
are eliminated from the detailed mechanisms with negligible
reduction error. Representative methods include sensitivity
analysis,1 principal component analysis,2 Jacobian analysis,3

detailed reduction,4 computational singular perturbation (CSP),5,6

optimization,7 directed relation graph (DRG),8-10 and DRG with
error propagation.11

While skeletal mechanisms are smaller than the detailed ones,
they are typically still stiff in that many radicals with short time
scales are important species and cannot be eliminated in skeletal
reduction. To remove the stiffness, methods based on time scale
analysis, such as quasi steady state approximation (QSSA)12-18

and rate-controlled constrained equilibrium,19 can be exploited.
More systematic approaches involve the separation of fast and
slow subspaces by decoupling the Jacobian matrix, notably those
of intrinsic low dimensional manifold (ILDM)20 and CSP.21

Because time scale separation requires time-consuming matrix
operations, as well as iterations in many cases, it frequently
needs to be combined with methods of tabulation, such as in-
situ adaptive tabulation (ISAT)22 and pre-imaged curves.23 On
the other hand, the QSSA approach, developed almost a century
ago,24,25 is simple to apply and has been widely adopted in
studies on mechanism reduction in the last two decades.12-18

Specifically, a systematic procedure for lumping elementary
reactions into semi-global reactions for QSSA based reduction
was developed,14 the error induced by QSSA was analyzed,26

and the effects of QSSA on the element conservation and
entropy production were studied.27

The consequence of invoking QSSA is frequently the need
to solve a set of coupled, nonlinear, algebraic equations to obtain
the concentrations of the quasi steady state (QSS) species, which
are required to evaluate the global reaction rates. In most of
the previous studies, these equations were solved by algebraic
iterations, which may require a large number of computation
loops to converge. As such, the time savings gained by the
elimination of species and reactions are compromised, rendering
the reduced mechanisms inefficient to apply.28 Even worse, the
algebraic iterations may diverge and consequently lead to failure
in obtaining trustable final solutions in large simulations. To
resolve this problem, empirical methods have been applied to
truncate terms in the nonlinear algebraic equations29 such that
the resulting system is sufficiently simple to be solved analyti-
cally. The errors associated with such truncations, however, are
frequently difficult to assess. It is therefore of interest to develop
a systematic and efficient approach to obtain accurate analytic
solutions for the equations of QSSA. In response to such a need,
a method based on graph theory was developed to obtain
analytic solutions for the QSS species concentrations with user
specified accuracy, and as such significantly improves the
efficiency and applicability of QSS based reduced mechanisms.
This method is presented in the following.

2. Methodology

A QSS species typically features a fast destruction time scale
such that its small or moderate creation rate is quickly balanced
by the self-depleting destruction rate, causing it to remain in
low concentration after a transient period. The net production
rate of the QSS species is therefore negligible compared with
both the creation and the destruction rates, resulting in an
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algebraic equation for its concentration. If a system consists of
multiple QSS species, the algebraic equations are in general
nonlinearly coupled, and analytic solutions are difficult to obtain.
Consequently, these nonlinear equations are frequently solved
by algebraic iterations. In the following we shall, however,
demonstrate that the nonlinear terms are not important in many
instances such that the nonlinear system can be approximated
in a rational manner by a set of linear equations.

2.1. Linearized Quasi Steady State Approximation (LQS-
SA). In a reaction mechanism consisting ofI irreversible
elementary reactions andK species, with the firstN of which
assumed to be in steady state without loss of generality, the
group of algebraic equations of QSSA can be expressed as

where the subscriptsi, j, andk indicate theith QSS species, the
jth reaction, and thekth species respectively,ωC and ωD are
the creation and destruction rates, respectively,x is the mole
concentration,ν′ andν′′ are the stoichiometric coefficients of
the reactants and products respectively,Ω is the reaction rate,
andk is the product of the Arrhenius rate expression and relevant
rate corrections, such as the third body concentration and the
falloff correction.

Equation 1 is nonlinear in general in terms ofxk, mostly
because there are frequently reactions containing more than one
QSS reactants, resulting in nonlinearity inΩj. While an analytic
solution of eq 1 is in general not available, we recognize that
the concentrations of QSS species are typically small such that
the collision frequency of two QSS species is small. Conse-
quently, reactions with more than one, mostly two, QSS
reactants may not be important in the mechanism in most cases.
Furthermore, it is well recognized that the effects of QSS species
in the third body concentration and other correction terms inkj

are typically negligible. As such, after the unimportant reactions
and species are eliminated from detailed mechanisms by skeletal
reduction, it is expected that the existence of important nonlinear
terms in QSS relations for skeletal mechanisms is of low
probability, and a linear approximation of the equations is likely
to exist. This point will be demonstrated in section 3 with
ethylene as an example.

To assess the importance of the nonlinear terms, the normal-
ized contributions of the nonlinear terms to the destruction and
creation rates of theith QSS species can be quantified as

where

The nonlinear terms can therefore be eliminated from the QSS
relations for a given reaction state if

whereε is a user-specified small threshold value, for example
0.1. Furthermore, if (3) is satisfied for all the reaction states of
interest, the nonlinear terms can be completely eliminated, and
the QSS relations in (1) are then approximated by a set of linear
equations:

It is readily seen thatDi, Cik, andCi0 are independent of QSS
species concentrations and as such are treated as constants in
solvingxi. It is further noted thatDi is positive, andCik andCi0

are non-negative. This observation will be exploited in solving
eq 4 in the following sections.

We next note that although the linear equations in eq 4 can
be solved with Gaussian elimination, the time complexity is a
cubic function of the number of QSS species. Furthermore,
though algebraic iterations can be more efficient because the
coefficient matrix in eq 4 is frequently sparse, the procedure
may suffer from the difficulty in convergence. The computation,
however, can be greatly facilitated by deriving an analytic
solution based on the sparse coefficient matrix. This was
accomplished in the present study through graph theory, to be
discussed next.

2.2. QSS Graph (QSSG).2.2.1. Graph Construction.To
obtain a sequence to solve eq 4, it is transformed to the following
standard form:

where

It is seen thatAij and Ai0 are both non-negative in thatDi is
positive, andCij andCi0 are non-negative, as mentioned earlier.
If Aij > 0, the concentrationxj is needed to directly solve forxi

in eq 5. Such directed requirement of one QSS species by
another can be mapped to a directed graph, namely the QSSG,
in which each QSS species is a vertex, and there is an edgexi

f xj if and only if Aij > 0. A representative configuration of
QSSG is shown in Figure 1a and will be discussed later.

In rare cases, all equations in (5) are explicit, which means
that there is a sequence ofi in which the equations can be solved
one after another without substitution. This indicates an acyclic
QSSG, such that the graph can be transformed to a tree structure,
and the solution of each nodexi only requires the information
of the nodes in the subtree rooted byxi. In most practical
problems, some subsets of the QSS species are strongly coupled
and cycles exist in QSSG. In such cases, the QSS species can
be decomposed into groups. The inner-group couplings of the
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species form cycles in QSSG, and the inter-group couplings
are acyclic, such that the QSS species can be solved group by
group in a semi-explicit manner. Although only a single group
can be found in QSSG ifA is a full matrix, multiple groups
can be found ifA is sufficiently sparse. Therefore, the first step
in solving eq 5 is to reduce the QSSG by eliminating
unnecessary graph edges, the importance of which is measured
by the normalized contribution,rij, of the jth QSS species to
the creation rate of theith QSS species:

whereS is the set of all possible reaction states of interest. When
rij is compared with a user specified small threshold valueε,
the terms with negligible contribution to the creation rate ofxi

are truncated, resulting in the elimination of the corresponding
edges in the QSSG. A sparser graph can therefore be obtained.

2.2.2. Strongly Connected Component (SCC) and Topological
Sort of QSSG.The reduced QSSG is expected to be sparse in
that each QSS species typically only interacts with a few of the
others. In an example QSSG shown in Figure 1a, three SCCs,
namely A, B, and C, each of which is a group of species
connected by at least one cyclic path, are enclosed in dotted
circles. The species inside each SCC form a set of implicit
equations that need to be solved with variable elimination by
substitution. However, when all the SCCs are identified, the
dependence of one SCC on another is acyclic, and the SCCs
can be solved one after another in a sequence. In such cases, a
block upper-triangular coefficient matrix can be obtained by
rearranging the sequence of the variables. The solution of eq 5
is therefore decomposed into solving several smaller equation
sets, the total cost of which is lower than that of solving the
large equation set, in that the cost of solving linear problems is
a worse-than-linear, typically a quadratic, function of the number
of variables.

To identify the SCCs in a QSSG, existing methods in graph
theory can be employed. Formally, a SCC is defined as a
maximal subgraph in a directed graph, and there is a directed
path between any pair of vertices inside the SCC. A method
based on depth-first search (DFS) can be applied to systemati-
cally and efficiently identify all the SCCs.30 For convenience,
a brief explanation of this method is presented below.

For a directed graph consisting ofN vertices, all labeled
“undiscovered” initially, letE denote the adjacent matrix of the
graph, where

Starting from each “undiscovered” vertexxi, a DFS is performed
on both graph G and graph GT with the transposed adjacency
matrix ET; a vertex is labeled “discovered” if it is reached by
the DFS in both G and GT. All the vertices newly “discovered”
by the current DFS then constitute an SCC. This procedure is
repeated until all the vertices are “discovered”.

As aforementioned, each QSS species in an SCC requires
the concentrations of all the other QSS species in the same SCC
either directly or indirectly. The inner-SCC couplings are strong,
and each of the SCCs can be treated as a single composite
vertex, the incoming and outgoing edges of which being the
union of those of its member vertices. As such, an acyclic graph
can be obtained, as shown in Figure 1b for the graph in Figure
1a. Each composite vertex in Figure 1b is labeled a unique
number, namely the topological order, such that the species in
the SCC with ordern only depends on the species in the SCCs
with orders not larger thann. Therefore, the SCCs can be solved
one after another in the topological order. The process to find
a topological order for acyclic graphs is known as topological
sort, asdescribed in ref 30.

2.2.3. ResolVing Inner-SCC Couplings.After the identification
of the SCCs and the topological sort, the last step is to solve
the species concentrations within each SCC with variable
elimination by substitution. Although the species in each SCC
are strongly connected, the subgraph of each SCC may still be
sparse, and the length of the expressions of the analytic solution
can be minimized by the proper selection of a sequence for
variable elimination, as what is frequently done when solving
algebraic equations with pencil and paper. To automate this
process, an algorithm similar to that for computing pageranks31

in worldwide-web search engines is developed to find an optimal
or near-optimal sequence for variable elimination. This is
accomplished by ranking the normalized expansion cost,ci, of
each variable, defined recursively as

whereM is the number of variables in the SCC, and the matrix
L is derived from the adjacency matrixE in eq 7 with
normalized columns, such that the sum of each column is unity.
It is readily seen that the solution ofc in (8) is the eigenvector
associated with the principal eigenvalue of matrixL , because
each entry ofL is non-negative and the sum of each column is
unity. The value ofci empirically indicates the extent of
expansion in the length of the equations due to the elimination
of the ith species in the SCC. The system typically expands
quickly in the beginning of the substitutions; however, the extent
of the expansion becomes restricted in the later substitution stage
because the size of the system is becoming smaller. Therefore,
variables with the lowest expansion cost should be solved first
to maintain a system as sparse as possible in the initial stage,
and consequently the overall computation cost of the solution
can be restricted to a minimal level. As such, the sequence
through which each variable is to be eliminated by substitution
can be determined by sorting the expansion costs of the variables
in the SCC in ascending order.

The method of LQSSA-QSSG is so far complete. It is now
applied to an example mechanism for ethylene/air in the next
section.

Figure 1. Sample QSSG showing (a) the existence of SCCs, which
are enclosed in dotted circles, and (b) the acyclic graph derived from
(a) by treating each SCC as a composite vertex. The topological order
of vertices is marked in (b), indicating the sequence in which the SCCs
are to be solved, e.g.,{x6} f {x4, x5} f {x1, x2, x3}.
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3. Results and Discussion

To demonstrate the algorithm described in section 2, a
detailed mechanism with 70 species32 and a corresponding
skeletal mechanism with 33 species8 were selected as target
mechanisms for reduction based on QSSA. First, using a
threshold value ofε ) 0.1 for normalized species time scales
as that in ref 8, a set of 24 QSS species, namely C, CH, CH2,
CH2*, HCO, CH2OH, CH3O, C2H, C2H3, C2H5, HCCO, CH2-
CHO, C3H2, n-C4H3, i-C4H3, n-C4H5, i-C4H5, C4H7, C6H3, A1

-,
C5H4OH, n-C3H7, i-C3H7, and CH3CCH2, were identified in the
detailed mechanism using the method in ref 6. Second, the same
12 QSS species as those in ref 8 were assumed in the 33 species
skeletal mechanism, resulting in a 16-step reduced mechanism.
To derive an analytic solution to the QSSA equations valid over
a wide parameter range, more than 1000 reaction states were
densely sampled from simulations of the perfectly stirred reactor
(PSR) and auto-ignition, which are typical homogeneous ap-
plications for extinction and ignition phenomena, respectively,
with pressures from 1 to 30 atm, equivalence ratios from 0.5 to
1.5, and initial temperatures from 1000 to 1600 K for auto-
ignition and 300 K for PSR. The sampled reaction states are
then applied as the data source for the algorithm in section 2.

To check the validity of LQSSA for the QSS species, the
normalized contributions of the nonlinear terms to the creation
rate and destruction rates of the QSS species were calculated
using eqs 2 and 3b. Figure 2a shows the histogram ofRmax and
âmax defined in eq 3b, calculated with the detailed mechanism
for all the sampled reaction states. It is seen that the contributions
of the nonlinear terms to the destruction rates of the QSS species
are generally small, e.g., less than about 0.1, and their contribu-
tions to the creation rates are non-negligible in many cases, with
the worst case value being close to unity. Therefore, LQSSA
does not seem to be applicable to the detailed mechanism.
However, considering that when the contributions of the
nonlinear terms to the destruction rates of all the QSS species
are small, as shown in Figure 2a, reactions with more than one
QSS species, e.g., A and B, can only control unimportant
reaction pathways with smaller rates as compared to the major
destruction pathways of A and B. If these slow reaction
pathways are the major creation terms for a certain downstream
QSS species C, species C is likely to be unimportant for the
production rate of the major species, and as such can be

eliminated in a skeletal reduction. To demonstrate this point,
Figure 2b shows the histogram ofRmax and âmax for the 33
species skeletal mechanism derived from the detailed mechanism
with the DRG method.8 It is seen that, once the unimportant
species and reactions are removed, contributions of the nonlinear
terms to both the creation and destruction rates are small, e.g.,
about 0.1-0.2, for all the QSS species. Therefore, LQSSA is
applicable after the skeletal reduction, in which all the unim-
portant QSS species are removed.

In rare cases where a few non-negligible nonlinear terms still
remain after the skeletal reduction, three strategies can be
assumed: (1) Remove some species from the QSS species list,
such that the resulting algebraic equations are linear. Because
important reactions with more than one QSS species are rare,
it is expected that only very few species need to be removed
from the QSS species list to form a linear system. Thus the
size of the resulting reduced mechanism is not significantly
increased. (2) If there are only very few, e.g., one or two,
nonlinear relations in eq 1, the nonlinear equations can be solved
as the last ones in the process of variable elimination by
substitution. Because these nonlinear equations are treated only
in the last couple of steps, the system of equations is already
sufficiently small to be readily solved. (3) In extreme cases
where many nonlinear terms remain even after the skeletal
reduction, a hybrid method that combines the iteration and
analytic solution of the linear components can be applied.
Specifically, in each loop of the hybrid method, the linear
components are first solved analytically with the nonlinear terms
treated as constants, which are then updated with the latest
results from the linear component. It is expected that it takes
fewer iterations, consequently less computation cost, to converge
with the hybrid scheme than with simple algebraic iterations if
the linear component is convergence-rate limiting. It is noted
nevertheless that though more can be discussed on the hybrid
method, it exists only under extremely rare situations and as
such is not the primary interest of this work.

We therefore proceed with the linear system obtained after
the skeletal reduction. The sparsity of the QSSA equations is
consequently to be examined. With the equations organized in
the form of eq 5, QSSGs were constructed from (6), in which
rij, the maximum normalized contributions of terms involving
xj to xi, were computed using all the sampled reaction states
and compared with the small threshold valueε. An edgexi f
xj in the QSSG is neglected ifxj contributes negligibly toxi for
all instances. The dependence of the number of edges in the
QSSG as a function of the small threshold valueε is shown in
Figure 3. It is seen that withε ) 0, there are about 40 edges,
each of which indicates a nontrivial coefficientAij in eq 5.
Compared with the full coefficient matrix of size 12 by 12, there
are only less than 30% nontrivial coefficients inA, which is
fairly sparse. Further selection ofε ≈ 0.1 leaves only 25 edges
in the reduced QSSG, as shown in Figure 3. The fraction of
nontrivial entries inA consequently decreases to less than 20%,
and such a sparse graph results in the highly efficient solution
of the LQSSA equations.

The QSSG obtained withε ) 0.11 is shown in Figure 4, in
which four SCCs were identified, three of which contain only
a single species. The topological order obtained with the method
in section 2.2 indicates the sequence in which the QSS species
concentrations can be solved as groups. The solutions of groups
2-4 are straightforward because there is only a single species
in each group, but group 1 contains 9 coupled species and an
efficient sequence for variable elimination is needed and can
be found with the algorithm in eq 8. The result is listed in Table

Figure 2. Distribution of Rmax and âmax, the maximum normalized
contribution to the destruction and the creation rates respectively as
defined in eq 3b, for more than 1000 densely sampled reaction states
from PSR and auto-ignition, calculated with (a) the detailed mechanism
with 70 species, and (b) the 33 species skeletal mechanism.
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1. It is seen from Figure 4 and Table 1 that the species that are
coupled weakly with other species, such as C2H3 and C, are to
be eliminated first, and the species that are coupled strongly
with others, such as CH2 and CH, are eliminated later. Such a
sequence therefore effectively reduces the expansion of the
expressions in the beginning stage of the variable elimination
process and improves the overall efficiency of the solution. This
method does not guarantee the exact optimal solution, but it
finds suboptimal solutions close to the optimal one. To
demonstrate this point, a set of 10 000 randomly generated
variable elimination sequences, each of which occurs with the
same probability, were tested. A FORTRAN code was generated
for each sequence, and the number of operations, including
multiplications and divisions, in each of the FORTAN codes
was counted. The result of the random test is shown in Figure
5. It is seen from the histogram that the number of instances as
a function of the number of operations, consequently the

computation cost, is approximately in normal distribution. The
most efficient sequence discovered in the 10 000 tests consists
of 91 operations, and the sequence identified with the proposed
algorithm has 92 operations, which is almost the minimum
value. It is further observed in Figure 5 that a randomly selected
variable elimination sequence may result in higher computation
costs than the optimal sequence by a factor of about 2 on average
and about 3 in the worst cases, demonstrating the necessity of
searching for an optimized sequence.

It is further noted that, although the efficiency might be further
improved slightly by using the exact optimal sequence, it is
exceedingly more difficult to find such an exact solution because
it involves the problem of integer programming, which is known
to be NP-hard and inefficient to solve. Furthermore, it is difficult
to formulate the exact optimization problem, both due to the
difficulty in the exact timing of different operations in a general
computation environment and because it is frequently not
completely clear which target function and constraints are the
best choice for the optimization of a reduced mechanism.
Therefore, finding the exact optimal solution might not be of
the best interest for many practical applications, because the
proposed method is sufficiently fast to find a near-optimal
sequence.

To demonstrate the accuracy of the proposed method, in
Figures 6 and 7 the 16-step reduced mechanism with LQSSA-
QSSG was compared with the 33-species skeletal mechanism
and the 16-step reduced mechanism with QSSA solved with
algebraic iterations, for auto-ignition and PSR respectively. It
is seen from Figure 6 that although there is a slightly visible
difference in the ignition delay time between the skeletal
mechanism and the 16-step mechanism with iteration, the
difference between the two 16-step reduced mechanisms is much
smaller and basically invisible. In Figure 7, all the three
mechanisms agree very well with one another, and the errors
are not visible. Furthermore, although only stoichiometric
mixtures are demonstrated in Figures 6 and 7, comparisons for
off-stoichiometric mixtures show similar agreement.

To further show the magnitudes of the errors induced by the
QSSA and the elimination of nonlinear and small linear terms
in LQSSA-QSSG, the relative errors in the profiles of Figures
6 and 7 are plotted in Figures 8 and 9, respectively. It is seen
that the difference between the 16-step mechanisms with
LQSSA-QSSG and QSSA with algebraic iterations is much
smaller than the error induced by QSSA; i.e., the additional
accuracy loss induced by the elimination of nonlinear and small
linear terms in the LQSSA-QSSG method is negligible com-
pared with that induced by QSSA. Furthermore, the overall small

Figure 3. Number of edges in the QSSG as a function of the threshold
valueε, showing that linear equations of LQSSA are sparse, and the
sparsity increases with larger threshold valueε.

Figure 4. Directed graph for QSS species with four SCCs, three of
which contain a single species, calculated with the skeletal mechanism
of 33 species, 12 of which are in QSS, with a threshold valueε )
0.11. The topological order is marked at the top-left corner of each
SCC.

TABLE 1: Optimal Sequence of Elimination by Substitution
for 9 QSS Species in a Strongly Connected Component in
the QSSG of the 33 Species Skeletal Mechanism withE )
0.11

no. QSS species expansion cost

1 C2H3 0.06
2 C 0.14
3 CH2OH 0.19
4 CH2CHO 0.26
5 HCCO 0.26
6 CH2* 0.38
7 HCO 0.39
8 CH2 0.46
9 CH 0.55

Figure 5. Distribution of number of operations, including multiplica-
tions and divisions, in 10 000 random tests, each with an automatically
generated FORTRAN code solving the nine-species SCC shown in
Figure 4.
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relative errors for both the ignition and extinction cases over
the wide parameter ranges of pressure, temperature, and
equivalence ratio show the validity of the LQSSA-QSSG
method, in addition to the efficiency and feasibility demonstrated
in earlier figures.

Finally, to further compare the properties of the current
LQSSA-QSSG method with those of the classical QSSA, it is
noted that though LQSSA and QSSA are based on the same
physical observation that the destruction rate of a QSS species
balances its creation rate after a transient period, the two
methods have qualitatively different properties. For example,
although neither existence nor uniqueness of the solution is
guaranteed for general nonlinear equations of QSSA, both are
guaranteed for the linearized system. It is further noted that,
because the elimination of nonlinear terms and weak depend-
ences between QSS species in LQSSA-QSSG can be equiva-
lently achieved through elimination of the corresponding
elementary reactions from the detailed or skeletal mechanisms,
the method of LQSSA-QSSG does not induce any new source
of element nonconservation or violation of the second law of

thermodynamics in addition to those induced in the method
combining skeletal reduction and QSSA.

4. Conclusions

In the above sections, the systematic approach of LQSSA-
QSSG for obtaining analytic solutions for QSS species con-
centrations in reduced mechanisms was presented. It is shown
that although the algebraic equations of QSSA are nonlinear in
general, the equations can be approximated accurately by a linear
system under most situations. This is based on the physical
reasoning that QSS species typically exist in low concentrations
and as such the probability of collisions between two QSS
species is expected to be much lower than that involving the
major species. Therefore, the majority of reactions involving
more than one QSS reactant can be eliminated through skeletal
reduction, resulting in a linear or near-linear set of equations
for the QSS species in the skeletal mechanism. The linear system

Figure 6. Dependence of ignition delay time on initial temperature
for auto-ignition under constant pressure, calculated with the 33-species
skeletal mechanism, the 16-step reduced mechanism with QSSA, and
the 16-step mechanism with LQSSA-QSSG respectively.

Figure 7. Dependence of temperature on residence time in perfectly
stirred reactors under difference pressures, calculated with the 33-species
skeletal mechanism, the 16-step reduced mechanism with QSSA, and
the 16-step mechanism with LQSSA-QSSG respectively.

Figure 8. Relative error in calculated ignition delay time as a function
of the initial temperature for profiles shown in Figure 6. The 16-step
mechanism with LQSSA-QSSG is compared with the 33-species
skeletal mechanism and the 16-step mechanism with QSSA respectively.

Figure 9. Relative error in calculated residence time as a function of
temperature deficiency from the adiabatic flame temperature in perfectly
stirred reactors for the profiles shown in Figure 7. The 16-step
mechanism with LQSSA-QSSG is compared with the 33-species
skeletal mechanism and the 16-step mechanism with QSSA respectively.

Analytic Solutions of Quasi Steady State Species J. Phys. Chem. A, Vol. 110, No. 49, 200613207



is found to be typically sparse and the QSSG method mapping
the QSS species dependences to a directed graph is employed
to solve the LQSSA equations analytically. By first identifying
the SCCs in QSSG, we then solved the implicit inner-SCC
couplings by substitution with an eigenvalue based algorithm,
which was developed to efficiently find near-optimal sequences
for variable elimination. The inter-SCC couplings were resolved
by a topologically sort to obtain a sequence in which the SCCs
can be solved one after another explicitly. The efficiency is high
for both the algorithm and the automatically generated solver
code.

The proposed algorithm has been compiled into a computer
code and a FORTRAN subroutine has been generated on the
basis of a 33 species skeletal mechanism developed previously
using DRG, and has been compared with the iterative QSSA
solver employed in the previous work for the 16-step reduced
mechanism. Results show that the elimination of the nonlinear
terms and the weak dependences between QSS species induce
negligible errors to the system compared with those by QSSA
for the ethylene/air mixtures. As such, the LQSSA-QSSG
method can serve as a rather general approach to eliminate the
algebraic iterations in QSS-based reduced mechanisms. The
various concepts and methodologies advanced herein are also
expected to be of utility in other branches of science involving
large systems of sparsely coupled entities.
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